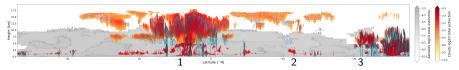
BroadBand Radiometer and MultiSpectral Imager L2a test data 3D radiative transfer simulations status update

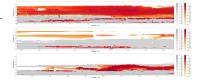
Najda Villefranque et al., MTR, WP-0240, 24th August 2022

L2 algorithms are currently tested using 1D BBR and MSI test data Columns are radiatively independent / isolated from each other \Rightarrow clouds are homogeneous and horizontally infinite in each column


Assumptions in current test data and L2 algorithms are consistent Retrieval algorithms also assume independent pixels \Rightarrow 1D radiances are interpreted as such and inverted accordingly

In reality, photons also travel horizontally (i.e., in 3D) Complex cloud geometry leads to shadowing and brightening effects \Rightarrow light received by one sensor has been "polluted" by neighbouring clouds

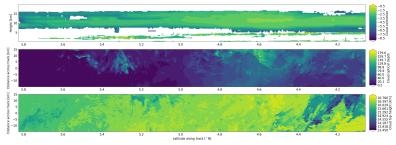
What errors can be expected from 1DRT-based retrieval algorithms when acting upon 3D RT data?


e.g. over- (under-) estimate cloud optical depth of illuminated (shadowed) cloud sides ? Compared to current errors ? Impact on the closure assessment ? Mitigation ?

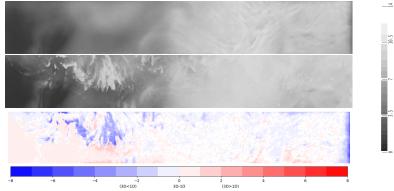
Ongoing 3D RT simulations...

3 scenes from the Hawaii frame, each 200 km x 30 km @ 250 m horizontal res.

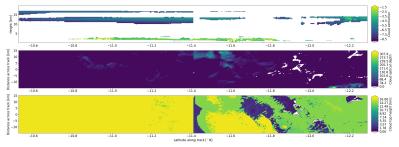
Scene	Latitude ($^{\circ}$ N)	SZA ($^{\circ}$)	SAA ($^{\circ}$)
1	4.03 - 5.80	34	113
2	-12.32 – -10.55	44	130
3	-21.59 – -19.83	51	136

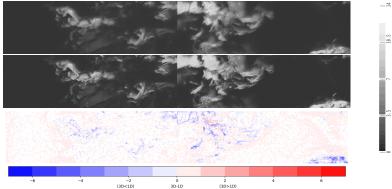

First set of "idealized" Monte Carlo simulations (with the htrdr code)

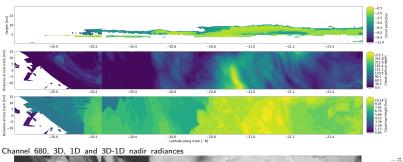
- 3D cloud fields from the GEM simulations (liquid and ice water contents and radii)
- 1D atmospheric profiles (T, P, q, O3 horizontally averaged over the scene)
- Gas optics = same correlated-k model as other test data (thanks Dave!)
- No precips, no aerosols, Lambertian surface with albedo 0.05, HG phase function

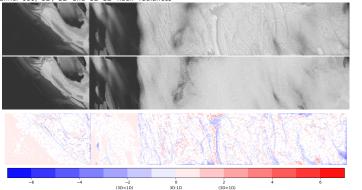

For each scene, 22 maps of 800 x 121 pixels, 4096 photons per pixel

- MSI : 3 channels $(0.680/0.865/10.85) \times (3D + 1D)$
- BBR : (SW + LW) \times 3 views (fore/nadir/aft) \times (3D + 1D)
- Fluxes at reference height : $(SW + LW) \times (3D + 1D)$

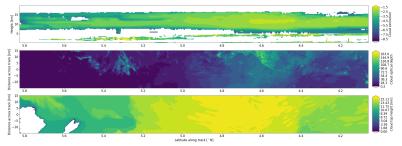


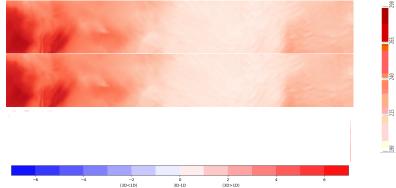






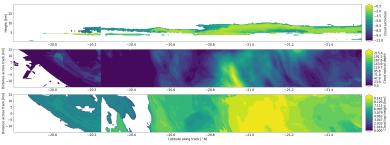
Channel 680, 3D, 1D and 3D-1D nadir radiances





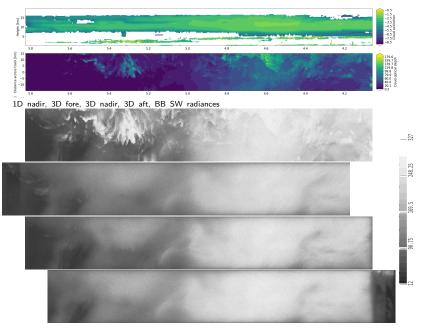
3D vs 1D RT on MSI simulations, scene 3, SZA 51°, SAA 44°, sat track \rightarrow

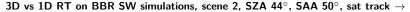
Channel 10.85, 3D, 1D and 3D-1D brightness temperatures

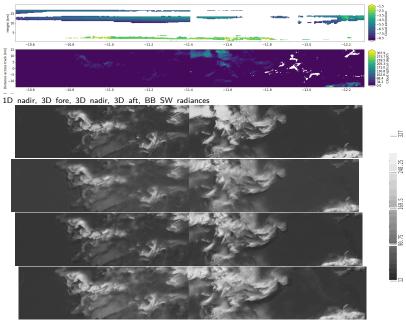


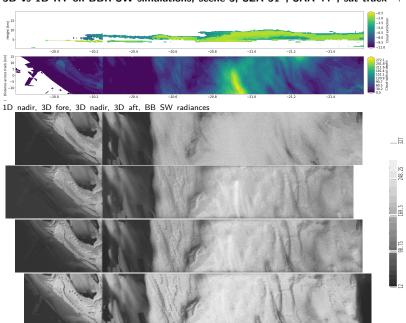
Channel 10.85, 3D, 1D and 3D-1D brightness temperatures

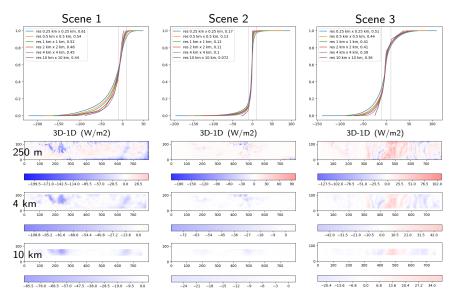





3D vs 1D RT on MSI simulations, scene 3, sat track \rightarrow


Channel 10.85, 3D, 1D and 3D-1D brightness temperatures


3D vs 1D RT on BBR SW simulations, scene 1, SZA 34°, SAA 67°, sat track \rightarrow



248.25 69.5 30.75

3D vs 1D RT on BBR SW simulations, cumulated distributions of 3D-1D differences

A large dataset to investigate 3D effects! As a function of scene type, cloud geometry, solar angles, cloud optical and geometrical depth...

To be continued...

- LW BB radiances and upward fluxes at reference heights for the 3 scenes (ongoing) \rightarrow these will be used to test the colocating part of BMA-FLX (WP0240)
- Add aerosols and precips (MSI code ready, BBR code in dev.), and a more realistic surface (eg for ocean need to input wind, code not ready) → to be consistent with the other test data (rad/lid)
 - \rightarrow will be used for other MSI-related processors (?)
- Go to full frame? Expensive but feasible. Would it be useful?

I will be leaving the project at the end of September... (for a permanent position @ Météo-France) but will finish these simulations anyway!