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Simulated cloud field (ARM-Cumulus at 8 m resolution) rendered using a Monte Carlo path-tracing model (htrdr, Villefranque et al. 2019)
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Challenges in understanding, modelling and observing radiation in cloudy atmospheres

How can we think through light propagation at the cloud field scale?
How do radiative fluxes depend on the cloud field properties?
How can we interpret radiance measurements in the presence of clouds?

Simulated cloud field (ARM-Cumulus at 8 m resolution) rendered using a Monte Carlo path-tracing model (htrdr, Villefranque et al. 2019)



Monte Carlo (MC) methods: input description of the medium ,
sample optical paths I by simulating radiative processes at the photon scale.

Standard MC: estimate radiative quantity /. as the mean sampled-path weight.
(e.g. upward flux is the average of reflected path weights Fy,, and non reflected path weights 0)

Fw=/ dy pr(y;m) w, ()
op ———

probability of path 7y path weight

‘/ direct sun (F¥un)

multiple scattering

Solar paths sampled in a heterogeneous cumulus cloud field



Monte Carlo (MC) methods: input description of the medium ,
sample optical paths I by simulating radiative processes at the photon scale.

Standard MC: estimate radiative quantity /. as the mean sampled-path weight.
(e.g. upward flux is the average of reflected path weights Fy,, and non reflected path weights 0)

Much more information is contained in the sampled paths!
How to extract it? How to synthesize it?
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Proposition = Symbolic (or Functionalized) MC: probability of path 7 path weight

use the sampled paths to estimate a functional /()
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Linear Symbolic MC (trivial) pr(v;m) L«

Path probability is not affected by the parameter
(e.g. m is the amount of incoming solar radiation)



Monte Carlo (MC) methods: input description of the medium ,
sample optical paths I by simulating radiative processes at the photon scale.

Standard MC: estimate radiative quantity /. as the mean sampled-path weight.
(e.g. upward flux is the average of reflected path weights Fy,, and non reflected path weights 0)

Much more information is contained in the sampled paths!
How to extract it? How to synthesize it?

Fw=/ dy pr(y;m) w, ()
op ———

Proposition = Symbolic (or Functionalized) MC: probability of path 7 path weight

use the sampled paths to estimate a functional /()
Dunn, 1981; Galtier et al., 2017; Maanane et al., 2020 . . L.
Linear Symbolic MC (trivial) pr(v;m) L«
Path probability is not affected by the parameter

(e.g. m is the amount of incoming solar radiation)

‘/ direct sun (F¥un)

Non-linear Symbolic MC pr(v;m) L«
Path probability is affected by the parameter

(e.g.  is the surface albedo or cloud droplet effective radius)
= use importance sampling to go back to linear, and

/ 7 apply weight-correction offline!
multiple scattering

Solar paths sampled in a heterogeneous cumulus cloud field



lllustration with the albedo o of a Lambertian surface as “symbolic” parameter, homogeneous slabs

1. Write the radiative transfer equation with
& an arbitrary value for «

g a\k
F(a) = ZFM& (;)
k=0

2. Estimate F}|4 as the mean weight of the
paths that have been reflected k times (as in
e.g. Barker and Davies 1992)

— 1
Frla = Frla = Ny E Wi,k
k|a

3. Evaluate Fg (o) = Z:jﬂdx Frla (%)A




lllustration with the albedo o of a Lambertian surface as “symbolic” parameter, homogeneous slabs

1. Write the radiative transfer equation with F. (@)
N . &
& an arbitrary value for «

g a\k
F<a>=k§m.d(g)

2. Estimate Fj |4 as the mean weight of the
paths that have been reflected k times (as in
e.g. Barker and Davies 1992)
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e = one standard MC simulation

— = one Symbolic MC simulation (colored = & = 1; gray = & = 0.3)



lllustration with the albedo « of a Lambertian surface as “symbolic” parameter, complex cloud field

3 SMC simulations per solar zenith angle: 3D, 1D, clear sky; f@il(a) = ZkK_n:)ax ﬁkm:lak
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Summary and outlook

e A formal framework for extracting information from sampled paths

e Useful for analysis of complex propagation, e.g. 3D effects of heterogeneous clouds

e and for parameter identification and uncertainty propagation
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e Geometrical parameters are more challenging (cf Galtier et al. talk)
e Also challenging: large number of parameters (e.g. 3D fields?)

e Towards parameterization for lage-scale models?

Thanks!



Surface albedo (a)

Small albedo = large uncertainties in the large albedo region,
Large albedo = increase computation time
Symbolic might be a bit more expensive (larger arrays to manage, not optimized here)
Multiple scattering dominates

Downard flux at surface
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