LMDZ
srtm_taumol17.F90
Go to the documentation of this file.
1 SUBROUTINE srtm_taumol17 &
2  & ( klev,&
3  & p_fac00 , p_fac01 , p_fac10 , p_fac11,&
4  & k_jp , k_jt , k_jt1 , p_oneminus,&
5  & p_colh2o , p_colco2 , p_colmol,&
6  & k_laytrop , p_selffac, p_selffrac, k_indself , p_forfac, p_forfrac, k_indfor,&
7  & p_sfluxzen, p_taug , p_taur &
8  & )
9 
10 ! Written by Eli J. Mlawer, Atmospheric & Environmental Research.
11 
12 ! BAND 17: 3250-4000 cm-1 (low - H2O,CO2; high - H2O,CO2)
13 
14 ! Modifications
15 ! M.Hamrud 01-Oct-2003 CY28 Cleaning
16 
17 ! JJMorcrette 2003-02-24 adapted to ECMWF environment
18 
19 ! PARAMETER (MG=16, MXLAY=203, NBANDS=14)
20 
21 USE parkind1 ,ONLY : jpim ,jprb
22 USE yomhook ,ONLY : lhook, dr_hook
23 
24 USE parsrtm , ONLY : jplay, jpg, ng17
25 USE yoesrta17, ONLY : absa, absb, forrefc, selfrefc &
26  & , sfluxrefc, rayl &
27  & , layreffr, strrat
28 USE yoesrtwn , ONLY : nspa, nspb
29 
30 IMPLICIT NONE
31 
32 !-- Output
33 INTEGER(KIND=JPIM),INTENT(IN) :: KLEV
34 REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC00(jplay)
35 REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC01(jplay)
36 REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC10(jplay)
37 REAL(KIND=JPRB) ,INTENT(IN) :: P_FAC11(jplay)
38 INTEGER(KIND=JPIM),INTENT(IN) :: K_JP(jplay)
39 INTEGER(KIND=JPIM),INTENT(IN) :: K_JT(jplay)
40 INTEGER(KIND=JPIM),INTENT(IN) :: K_JT1(jplay)
41 REAL(KIND=JPRB) ,INTENT(IN) :: P_ONEMINUS
42 REAL(KIND=JPRB) ,INTENT(IN) :: P_COLH2O(jplay)
43 REAL(KIND=JPRB) ,INTENT(IN) :: P_COLCO2(jplay)
44 REAL(KIND=JPRB) ,INTENT(IN) :: P_COLMOL(jplay)
45 INTEGER(KIND=JPIM),INTENT(IN) :: K_LAYTROP
46 REAL(KIND=JPRB) ,INTENT(IN) :: P_SELFFAC(jplay)
47 REAL(KIND=JPRB) ,INTENT(IN) :: P_SELFFRAC(jplay)
48 INTEGER(KIND=JPIM),INTENT(IN) :: K_INDSELF(jplay)
49 REAL(KIND=JPRB) ,INTENT(IN) :: P_FORFAC(jplay)
50 REAL(KIND=JPRB) ,INTENT(IN) :: P_FORFRAC(jplay)
51 INTEGER(KIND=JPIM),INTENT(IN) :: K_INDFOR(jplay)
52 
53 REAL(KIND=JPRB) ,INTENT(OUT) :: P_SFLUXZEN(jpg)
54 REAL(KIND=JPRB) ,INTENT(OUT) :: P_TAUG(jplay,jpg)
55 REAL(KIND=JPRB) ,INTENT(OUT) :: P_TAUR(jplay,jpg)
56 !- from INTFAC
57 !- from INTIND
58 !- from PRECISE
59 !- from PROFDATA
60 !- from SELF
61 INTEGER(KIND=JPIM) :: IG, IND0, IND1, INDS, INDF, JS, I_LAY, I_LAYSOLFR, I_NLAYERS
62 
63 REAL(KIND=JPRB) :: Z_FAC000, Z_FAC001, Z_FAC010, Z_FAC011, Z_FAC100, Z_FAC101,&
64  & Z_FAC110, Z_FAC111, Z_FS, Z_SPECCOMB, Z_SPECMULT, Z_SPECPARM, &
65  & Z_TAURAY
66 REAL(KIND=JPRB) :: ZHOOK_HANDLE
67 
68 IF (lhook) CALL dr_hook('SRTM_TAUMOL17',0,zhook_handle)
69 i_nlayers = klev
70 
71 ! Compute the optical depth by interpolating in ln(pressure),
72 ! temperature, and appropriate species. Below LAYTROP, the water
73 ! vapor self-continuum is interpolated (in temperature) separately.
74 DO i_lay = 1, k_laytrop
75  z_speccomb = p_colh2o(i_lay) + strrat*p_colco2(i_lay)
76  z_specparm = p_colh2o(i_lay)/z_speccomb
77  IF (z_specparm >= p_oneminus) z_specparm = p_oneminus
78  z_specmult = 8.*(z_specparm)
79  js = 1 + int(z_specmult)
80  z_fs = mod(z_specmult, 1.0_jprb )
81 ! Z_FAC000 = (1. - Z_FS) * P_FAC00(I_LAY)
82 ! Z_FAC010 = (1. - Z_FS) * P_FAC10(I_LAY)
83 ! Z_FAC100 = Z_FS * P_FAC00(I_LAY)
84 ! Z_FAC110 = Z_FS * P_FAC10(I_LAY)
85 ! Z_FAC001 = (1. - Z_FS) * P_FAC01(I_LAY)
86 ! Z_FAC011 = (1. - Z_FS) * P_FAC11(I_LAY)
87 ! Z_FAC101 = Z_FS * P_FAC01(I_LAY)
88 ! Z_FAC111 = Z_FS * P_FAC11(I_LAY)
89  ind0 = ((k_jp(i_lay)-1)*5+(k_jt(i_lay)-1))*nspa(17) + js
90  ind1 = (k_jp(i_lay)*5+(k_jt1(i_lay)-1))*nspa(17) + js
91  inds = k_indself(i_lay)
92  indf = k_indfor(i_lay)
93  z_tauray = p_colmol(i_lay) * rayl
94 
95 ! DO IG = 1, NG(17)
96  DO ig = 1, ng17
97  p_taug(i_lay,ig) = z_speccomb * &
98  & (&
99  & (1. - z_fs) * ( absa(ind0,ig) * p_fac00(i_lay) + &
100  & absa(ind0+9,ig) * p_fac10(i_lay) + &
101  & absa(ind1,ig) * p_fac01(i_lay) + &
102  & absa(ind1+9,ig) * p_fac11(i_lay) ) + &
103  & z_fs * ( absa(ind0+1,ig) * p_fac00(i_lay) + &
104  & absa(ind0+10,ig) * p_fac10(i_lay) + &
105  & absa(ind1+1,ig) * p_fac01(i_lay) + &
106  & absa(ind1+10,ig) * p_fac11(i_lay) ) &
107  & ) + &
108  & p_colh2o(i_lay) * &
109  & (p_selffac(i_lay) * (selfrefc(inds,ig) + &
110  & p_selffrac(i_lay) * &
111  & (selfrefc(inds+1,ig) - selfrefc(inds,ig))) + &
112  & p_forfac(i_lay) * (forrefc(indf,ig) + &
113  & p_forfrac(i_lay) * &
114  & (forrefc(indf+1,ig) - forrefc(indf,ig))))
115 ! & + TAURAY
116 ! SSA(LAY,IG) = TAURAY/TAUG(LAY,IG)
117  p_taur(i_lay,ig) = z_tauray
118  ENDDO
119 ENDDO
120 
121 i_laysolfr = i_nlayers
122 
123 DO i_lay = k_laytrop+1, i_nlayers
124  IF (k_jp(i_lay-1) < layreffr .AND. k_jp(i_lay) >= layreffr) &
125  & i_laysolfr = i_lay
126  z_speccomb = p_colh2o(i_lay) + strrat*p_colco2(i_lay)
127  z_specparm = p_colh2o(i_lay)/z_speccomb
128  IF (z_specparm >= p_oneminus) z_specparm = p_oneminus
129  z_specmult = 4.*(z_specparm)
130  js = 1 + int(z_specmult)
131  z_fs = mod(z_specmult, 1.0_jprb )
132 ! Z_FAC000 = (1. - Z_FS) * P_FAC00(I_LAY)
133 ! Z_FAC010 = (1. - Z_FS) * P_FAC10(I_LAY)
134 ! Z_FAC100 = Z_FS * P_FAC00(I_LAY)
135 ! Z_FAC110 = Z_FS * P_FAC10(I_LAY)
136 ! Z_FAC001 = (1. - Z_FS) * P_FAC01(I_LAY)
137 ! Z_FAC011 = (1. - Z_FS) * P_FAC11(I_LAY)
138 ! Z_FAC101 = Z_FS * P_FAC01(I_LAY)
139 ! Z_FAC111 = Z_FS * P_FAC11(I_LAY)
140  ind0 = ((k_jp(i_lay)-13)*5+(k_jt(i_lay)-1))*nspb(17) + js
141  ind1 = ((k_jp(i_lay)-12)*5+(k_jt1(i_lay)-1))*nspb(17) + js
142  indf = k_indfor(i_lay)
143  z_tauray = p_colmol(i_lay) * rayl
144 
145 ! DO IG = 1, NG(17)
146  DO ig = 1, ng17
147  p_taug(i_lay,ig) = z_speccomb * &
148 ! & (Z_FAC000 * ABSB(IND0,IG) + &
149 ! & Z_FAC100 * ABSB(IND0+1,IG) + &
150 ! & Z_FAC010 * ABSB(IND0+5,IG) + &
151 ! & Z_FAC110 * ABSB(IND0+6,IG) + &
152 ! & Z_FAC001 * ABSB(IND1,IG) + &
153 ! & Z_FAC101 * ABSB(IND1+1,IG) + &
154 ! & Z_FAC011 * ABSB(IND1+5,IG) + &
155 ! & Z_FAC111 * ABSB(IND1+6,IG)) + &
156  & (&
157  & (1. - z_fs) * ( absb(ind0,ig) * p_fac00(i_lay) + &
158  & absb(ind0+5,ig) * p_fac10(i_lay) + &
159  & absb(ind1,ig) * p_fac01(i_lay) + &
160  & absb(ind1+5,ig) * p_fac11(i_lay) ) + &
161  & z_fs * ( absb(ind0+1,ig) * p_fac00(i_lay) + &
162  & absb(ind0+6,ig) * p_fac10(i_lay) + &
163  & absb(ind1+1,ig) * p_fac01(i_lay) + &
164  & absb(ind1+6,ig) * p_fac11(i_lay) ) &
165  & ) + &
166  & p_colh2o(i_lay) * &
167  & p_forfac(i_lay) * (forrefc(indf,ig) + &
168  & p_forfrac(i_lay) * &
169  & (forrefc(indf+1,ig) - forrefc(indf,ig)))
170 ! & + TAURAY
171 ! SSA(LAY,IG) = TAURAY/TAUG(LAY,IG)
172  IF (i_lay == i_laysolfr) p_sfluxzen(ig) = sfluxrefc(ig,js) &
173  & + z_fs * (sfluxrefc(ig,js+1) - sfluxrefc(ig,js))
174  p_taur(i_lay,ig) = z_tauray
175  ENDDO
176 ENDDO
177 
178 !-----------------------------------------------------------------------
179 IF (lhook) CALL dr_hook('SRTM_TAUMOL17',1,zhook_handle)
180 END SUBROUTINE srtm_taumol17
181 
real(kind=jprb), dimension(1175, ng17) absb
Definition: yoesrta17.F90:24
integer(kind=jpim), parameter jplay
Definition: parsrtm.F90:19
real(kind=jprb) strrat
Definition: yoesrta17.F90:20
integer, save klev
Definition: dimphy.F90:7
subroutine srtm_taumol17(KLEV, P_FAC00, P_FAC01, P_FAC10, P_FAC11, K_JP, K_JT, K_JT1, P_ONEMINUS, P_COLH2O, P_COLCO2, P_COLMOL, K_LAYTROP, P_SELFFAC, P_SELFFRAC, K_INDSELF, P_FORFAC, P_FORFRAC, K_INDFOR, P_SFLUXZEN, P_TAUG, P_TAUR)
real(kind=jprb) rayl
Definition: yoesrta17.F90:20
real(kind=jprb), dimension(ng17, 5) sfluxrefc
Definition: yoesrta17.F90:26
integer(kind=jpim), dimension(16:29) nspa
Definition: yoesrtwn.F90:12
integer(kind=jpim) layreffr
Definition: yoesrta17.F90:21
integer, parameter jprb
Definition: parkind1.F90:31
integer(kind=jpim), parameter ng17
Definition: parsrtm.F90:39
integer(kind=jpim), dimension(16:29) nspb
Definition: yoesrtwn.F90:13
logical lhook
Definition: yomhook.F90:12
subroutine dr_hook(CDNAME, KSWITCH, PKEY)
Definition: yomhook.F90:17
integer, parameter jpim
Definition: parkind1.F90:13
real(kind=jprb), dimension(585, ng17) absa
Definition: yoesrta17.F90:23
integer(kind=jpim), parameter jpg
Definition: parsrtm.F90:21
real(kind=jprb), dimension(4, ng17) forrefc
Definition: yoesrta17.F90:25
real(kind=jprb), dimension(10, ng17) selfrefc
Definition: yoesrta17.F90:25